Fractional Diffusion Equation for Aging and Equilibrated Random Walks

نویسندگان

  • V.Yu. Zaburdaev
  • I. M. Sokolov
چکیده

We consider continuous time random walks and discuss situations pertinent to aging. These correspond to the case when the initial state of the system is known not at preparation (at t = 0) but at the later instant of time t1 > 0 (intermediate-time initial condition). We derive the generalized aging diffusion equation for this case and express it through a single memory kernel. The results obtained are applied to the practically relevant case of the equilibrated random walks. We moreover discuss some subtleties in the setup of the aging subdiffusion problem and show that the behavior of the system depends on what was taken as the intermediate-time initial condition: whether it was coordinate of one particle given by measurement or the whole probability distribution. The two setups lead to different predictions for the evolution of a system. This fact stresses the necessity of a precise definition of aging statistical ensembles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aging in subdiffusion generated by a deterministic dynamical system.

We investigate aging behavior in a simple dynamical system: a nonlinear map which generates subdiffusion deterministically. Asymptotic behaviors of the diffusion process are described using aging continuous time random walks. We show how these processes are described by an aging diffusion equation which is of fractional order. Our work demonstrates that aging behavior can be found in determinis...

متن کامل

Revisiting the Derivation of the Fractional Diffusion Equation

The fractional diffusion equation is derived from the master equation of continuous time random walks (CTRWs) via a straightforward application of the GnedenkoKolmogorov limit theorem. The Cauchy problem for the fractional diffusion equation is solved in various important and general cases. The meaning of the proper diffusion limit for CTRWs is discussed.

متن کامل

Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation.

We present a numerical method for the Monte Carlo simulation of uncoupled continuous-time random walks with a Lévy alpha -stable distribution of jumps in space and a Mittag-Leffler distribution of waiting times, and apply it to the stochastic solution of the Cauchy problem for a partial differential equation with fractional derivatives both in space and in time. The one-parameter Mittag-Leffler...

متن کامل

Limit Theorems for Coupled Continuous Time Random Walks

Scaling limits of continuous time random walks are used in physics to model anomalous diffusion, in which a cloud of particles spreads at a different rate than the classical Brownian motion. Governing equations for these limit processes generalize the classical diffusion equation. In this article, we characterize scaling limits in the case where the particle jump sizes and the waiting time betw...

متن کامل

Random walk approximation of fractional-order multiscaling anomalous diffusion.

Random walks are developed to approximate the solutions of multiscaling, fractional-order, anomalous diffusion equations. The essential elements of the diffusion are described by the matrix-order scaling indexes and the mixing measure, which describes the diffusion coefficient in every direction. Two forms of the governing equation (also called the multiscaling fractional diffusion equation), b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010